Toward a tight upper bound for the error probability of the binary Gaussian classification problem
نویسندگان
چکیده
It is well known that the error probability, of the binary Gaussian classification problem with different class covariance matrices, cannot be generally evaluated exactly because of the lack of closed-form expression. This fact pointed out the need to find a tight upper bound for the error probability. This issue has been for more than 50 years ago and is still of interest. All derived upper-bounds are not free of flaws. They might be loose, computationally inefficient particularly in highly dimensional situations, or excessively time consuming if high degree of accuracy is desired. In this paper, a new technique is developed to estimate a tight upper bound for the error probability of the well-known binary Gaussian classification problem with different covariance matrices. The basic idea of the proposed technique is to replace the optimal Bayes decision boundary with suboptimal boundaries which provide an easy-to-calculate upper bound for the error probability. In particular, three types of decision boundaries are investigated: planes, elliptic cylinders, and cones. The new decision boundaries are selected in such a way as to provide the tightest possible upper bound. The proposed technique is found to provide an upper bound, tighter than many of the often used bounds such as the Chernoff bound and the Bayesian-distance bound. In addition, the computation time of the proposed bound is much less than that required by the Monte-Carlo simulation technique. When applied to real world classification problems, obtained from the UCI repository [H. Chernoff, A measure for asymptotic efficiency of a hypothesis based on a sum of observations, Ann. Math. Statist. 23 (1952) 493–507.], the proposed bound was found to provide a tight bound for the analytical error probability of the quadratic discriminant analysis (QDA) classifier and a good approximation to its empirical error probability. Crown Copyright 2007 Published by Elsevier Ltd. All rights reserved.
منابع مشابه
A Sharp Sufficient Condition for Sparsity Pattern Recovery
Sufficient number of linear and noisy measurements for exact and approximate sparsity pattern/support set recovery in the high dimensional setting is derived. Although this problem as been addressed in the recent literature, there is still considerable gaps between those results and the exact limits of the perfect support set recovery. To reduce this gap, in this paper, the sufficient con...
متن کاملA Generalized Poor-Verdu Error Bound for Multihypothesis Testing and the Channel Reliability Function
A lower bound on the minimum error probability for multihypothesis testing is established. The bound, which is expressed in terms of the cumulative distribution function of the tilted posterior hypothesis distribution given the observation with tilting parameter θ ≥ 1, generalizes an earlier bound due the Poor and Verdú (1995). A sufficient condition is established under which the new bound (mi...
متن کاملToward a Thorough Approach to Predicting Klinkenberg Permeability in a Tight Gas Reservoir: A Comparative Study
Klinkenberg permeability is an important parameter in tight gas reservoirs. There are conventional methods for determining it, but these methods depend on core permeability. Cores are few in number, but well logs are usually accessible for all wells and provide continuous information. In this regard, regression methods have been used to achieve reliable relations between log readings and Klinke...
متن کاملExact Rate of Convergence of Kernel-Based Classification Rule
A binary classification problem is considered, where the posteriori probability is estimated by the nonparametric kernel regression estimate with naive kernel. The excess error probability of the corresponding plug-in decision classification rule according to the error probability of the Bayes decision is studied such that the excess error probability is decomposed into approximation and estima...
متن کاملGaussian Margin Machines
We introduce Gaussian Margin Machines (GMMs), which maintain a Gaussian distribution over weight vectors for binary classification. The learning algorithm for these machines seeks the least informative distribution that will classify the training data correctly with high probability. One formulation can be expressed as a convex constrained optimization problem whose solution can be represented ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 41 شماره
صفحات -
تاریخ انتشار 2008